반응형
- 참고 : pytorch
전이학습(Transfer Learning) 튜토리얼
- 충분한 크기의 데이터셋을 갖추는 경우가 상대적으로 어려움
- 이를 해결하기 위해 전이학습 사용
- 2가지 전이학습 방법
- 합성곱 신경망의 미세조정 방법
- 무작위 초기화 대신에 미리 학습된 신경망을 가져와 초기화 후 학습
- 고정 특정 추출기로써의 합성곱 신경망
- 마지막의 완전히 연결된 계층을 제외한 모든 신경망의 가중치 고정
- 마지막 FC는 새로운 무작위의 가중치를 갖는 계층으로 대체
- 합성곱 신경망의 미세조정 방법
학습할 데이터 불러오기
- 75개의 검증용 이미지
- class는 ants, bees
# 학습을 위한 데이터 증가(Augmentation)와 일반화하기
# 단지 검증을 위한 일반화하기
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]), # 해당 수치는 Imagenet에서 가장 좋았다는 정규화 수치
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
use_gpu = torch.cuda.is_available()
데이터 시각화
def imshow(inp, title=None):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
모델 학습 함수
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for data in dataloaders[phase]:
# get the inputs
inputs, labels = data
# wrap them in Variable
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
- 학습 예측값 시각화 함수
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
for i, data in enumerate(dataloaders['val']):
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
합성곱 신경망 미세조정(Finetuning)
- 미리 학습한 모델을 불러와서 마지막 FC만 재설정
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
if use_gpu:
model_ft = model_ft.cuda()
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)
>>> Best val Acc: 0.947712
고정 특정 추출기로써의 합성곱 신경망
- 마지막 FC 계층을 제외한 나머지 모든 레이어 고정
- 경사도 계산 수행하지 않도록 설정
- 시간절약(대부분의 레이어에서 경사도 계산X, 순전파는 계산)
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
if use_gpu:
model_conv = model_conv.cuda()
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opoosed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)
>>> Best val Acc: 0.967320
반응형
'Study > Self Education' 카테고리의 다른 글
Pytorch 기본기 - 5 (0) | 2024.07.02 |
---|---|
Pytorch 기본기 - 3 (0) | 2024.07.02 |
Pytorch 기본기 - 2 (0) | 2024.07.02 |
Pytorch 기본기 - 1 (0) | 2024.07.02 |
핸즈온 머신러닝 - 14 (0) | 2024.06.19 |